Q.P.Code:23EC0409

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025 ANALOG AND DIGITAL COMMUNICATIONS

		(Electronics and Communications Engineering)			
nr:	•	(Electronics and Communications Engineering)	ax. Ma	arlza.	70
I III	ie:		1X. IVI	arks:	70
		PART-A (Angular all the Questions 10 x 2 = 20 Marks)			
1	_	(Answer all the Questions $10 \times 2 = 20$ Marks)	CO1	T 1	23/4
1	a	What is the need for modulation?	CO1	L1	2M
	b	List the method of generation of amplitude modulation.	CO ₂	L2	2M
	c	Explain the relationship between FM and PM.	CO ₂	L2	2M
	d	Compare AM & FM.	CO ₂	L2	2M
	e	What is the difference between high power modulation and low power Modulation.	CO5	L2	2M
	f	Explain the superhetrodyne principle.	CO ₁	L2	2M
	g	Define figure of merit.	CO ₄	L2	2M
	h	Explain the difference between TDM & FDM.	CO ₃	L2	2M
	i	Explain how bit error rate (BER) affects the performance of a system.	CO ₄	L3	2M
	j	What is ISI and what causes it?	CO ₁	L3	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Derive the expression for AM in both time domain and frequency domain With necessary waveforms.	CO2	L2	5M
	b	A 500W, 100KHz carrier is modulated to a depth of 60% by modulating	CO ₃	L3	5M
		Frequency of 1KHz. Calculate the total power transmitted. What are the			
		sideband components of AM Wave?			
		OR			
3	Я	Explain the AM generation using a Switching modulator.	CO ₂	L2	5M
		Analyse the DSB-SC wave in time domain and frequency domains.	CO3	L3	5M
	~	UNIT-II	000		01,1
4	9	What is Pre-emphasis and De-emphasis explain?	CO1	L2	5M
•		The max deviation allotted in FM broadcasting system is 75KHz. The	CO3		5M
	D	modulated signal is a single tone sinusoidal of 8kHz. Determine band width	000		OIVI
		of FM. What will be the bandwidth when modulating signal amplitude is			
		doubled.			
		OR			
5		Explain the concept of FM detection using PLL.	CO2	Ι2	5M
3			CO ₃		5M
	D	A sinusoidal modulating signal with amplitude 10V and a frequency of	COS	LS	SIVI
		1KHz is applied to FM generator that has a frequency sensitivity constant of			
		40Hz/V. Determine the i) Frequency Deviation ii) Modulation Index			
_		UNIT-III	000	τ.	53.5
6		Draw the block diagram of FM receiver and explain its working.		L2	5M
	b	List and explain the characteristics of radio receivers	CO ₄	L3	5M
		OR			
7	a	When a super heterodyne receiver is tuned to 555kHz, its local oscillator	CO ₃	L3	6 M
		provides the mixer with an input at 1010 kHz. What is the image frequency?			
		The antenna of this receiver is connected to the mixer via a tuned circuit			
		whose loaded Q is 40. What will be the rejection ratio for the calculated			
		image frequency?			
	h	Compare AM and FM receivers.	CO3	1.2	4M
	IJ	Compare Lini and Lin 100011010.	-00		

		UNIT-IV			
8	a	Analyse noise in AM receiver with envelope detection.	CO ₄	L3	6M
	b	Define figure of merit and output signal to noise ratio.	CO ₄	L2	4M
		OR III			
9	a	A sinusoidal signal with a frequency of 5 kHz is transmitted through a	CO ₄	L3	6 M
		channel after modulation. The peak amplitude of the unmodulated carrier is			
		2V. The modulation index is μ 0.5. The two sided power spectral density of			
		noise is 10-8 W/Hz. Find in dB i) signal to noise ratio at the input of the			
		receiver ii) signal to noise ratio at the output of the receive			
	b	What is capture effect in FM?	CO ₁	L2	4M
		UNIT-V			
10	a	Express the transmitted signals in BPSK. Draw and explain the signal space	CO ₂	L3	6M
		diagram for 16-PSK.			
	b	What is ISI? Explain how it can be avoided in a dispersive channel?	CO ₁	L2	4M
		OR			
11	a	Explain the generation and detection of BFSK sysyem.	CO ₂	L2	6M
		Explain the difference between a coherent and Non-coherent reception	CO ₃	L3	4M
	~	system.			
		*** END ***			

